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Temperature Limit Results

ITER slab:                                    Tw = 390 C
ARIES-RS, uniform Tw:              Tw = 450 C

ARIES-RS, noniform Tw:  Tw_in=300 C, Tw_out = 480 C
ARIES-RS, noniform Tw, tilted plate, He incl.      = 515 C 

Wall temperature limit for flinabe (F) improves
for full ARIES-RS tokamak geometry

Core-edge
imp. limit

Old ITER-sized
slab

ARIES-RS
uniform Tw

ARIES-RS
nonuif. Tw;
fix Tin=300 C,
vary Tout

Tilted
plate
with He
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DT ion density

Fluorine ion density

Both hydrogenic and impurity densities
peak near the divertor plates

ARIES-RS for CLIFF design



Helium ion density fairly broadly distributed,
and helium gas is localized near outer plate

ARIES-RS for CLIFF design

Helium ion density
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Impurity radiation is dominated by fluorine
and is strongest near the divertor plate

ARIES-RS for CLIFF design

Poloidal position (m)
Top of
machine

Divertor 
plate

Fluorine & helium

Hydrogen

80 MW input from core
13 MW radiated by Fluorine
  3 MW radiated by helium
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UEDGE meshes used for NSTX module modeling differ in
the shape of the divertor surface (eqdsk 104312.00250) 

R=0.9
module

Mesh & module perpendicular
to poloidal flux surfaces

Mesh & module conform to
existing divertor surfaces

R=0.9
module



Orthogonal plates

Fit to divertors

Particle and energy fluxes to plate depend on details
of plate orientation



Orthogonal plates

Fit to divertors

Density and temperature on outer plate depend on details
of plate orientation
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Various core-edge densities used as boundary conditions; n_sep ~ 0.6 ncore

UEDGE simulations of NSTX single null with pumping
module 2 cm beyond separatrix on outer plate

Impurity radiation is neglected; module aligned to divertor plate

Peak heat flux on outer plate Peak Te on outer plate

ne ~ 1/Te
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Module pumping rate

Divertor density usually about twice the separatrix
density owing to the pumping module (R=0.9)

Divertor density peaks outside of Te maximum

For fixed ncore, divertor density increases by factor of ~3 for no pumping   
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CDX-U mesh
up/down symmetry assumed

CL



Ion density shows little change until
wall recycling coefficient Rw > 0.5

R   = 1w
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Ion and electron temperatures change
inversely to ion density as Rw is varied

R   = 1w
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Ion and electron temperatures decrease 
with wall recycling, Rw

The total plasma pressure, n  (T   + T   ), changes
little as R    is varied.
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Total plasma pressure, n  (T   + T   ), changes
little as R    is varied.
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Thick liquid-walled spheromak magnetic fusion power plant

R. W. Moir, R. H. Bulmer, T. K. Fowler, T. D. Rognlien, M. Z. Youssef

April 8, 2002

Abstract

We assume a spheromak configuration can be made and sustained by a steady
gun current, which injects particles, current and magnetic field, i.e., helicity
injection. The equilibrium is calculated with an MHD equilibrium code, where an
average beta of 10% is found. The toroidal current of 40 MA is sustained by an
injection current of 100 kA (125 MW of gun power). The flux linking the gun is
1/1000th that of the flux in the spheromak. The geometry allows a flow of liquid,

either molten salt, (flibe–Li2BeF4 or flinabe–LiNaBeF4) or liquid metal such as

SnLi which protects most of the walls and structures from neutron damage. The
free surface between the liquid and the burning plasma is heated by
bremsstrahlung and optical radiation and neutrons from the plasma. The
temperature of the free surface of the liquid is calculated and then the
evaporation rate is estimated. The impurity concentration in the burning plasma
is estimated and limited to a 20% reduction in the fusion power. For a high

radiating edge plasma, the divertor power density of 460 MW/m2 is handled by

high-speed (20 m/s), liquid jets. For low radiating edge plasmas, the divertor-

power density of 1860 MW/m2 is too high to handle for flibe but possibly

acceptable for SnLi with jets of 100 m/s flow speed. Calculations show the

tritium breeding is adequate with enriched 6Li and appropriate design of the

walls not covered by flowing liquid 15% of the total). We have come up with a
number of problem areas needing further study to make the design self
consistent and workable.
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Poloidal distribution may also be important

Poloidal distance

D
en

si
ty

, e
ne

rg
y

Midplane Divertor

E p



Midplane density and Te profiles broaden
into SOL with diffusive ELM model
DIII-D case with s.s. power to edge of 4 MW, ExB on,
recycling R=0.99
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Midplane density and Te profiles shift to
SOL with convective ELM model
DIII-D case with s.s. power to edge of 4 MW, ExB on,
recycling R=0.99
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Ejection phase for convective model

Change in density peaks near the outer
midplane during ejection

Flux surface 0.8 cm outside
separatrix at outer midplane 
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SOL potential rises rapidly as hotter
electrons are ejected from core

Flux surface 0.2 cm outside
separatrix at outer midplane 



Ejection phase for convective model

Radial ExB velocity can exceed 200 m/s
during the ejection phase

Poloidal distance (m)
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Outer divertor plate heat-flux similar with
and without ExB terms

DIII-D case using localized convection ELM ejection model
Steady-state power is 4 MW into SOL, recycling R=0.99
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Summary

- Convective or diffusive ejection model lead to similar
   SOL response

- Energy per pulse is important for whether or not inner
  plate receives significant ELM power

- ExB drifts are strong during the ELM pulse in the divertor
  leg

 - when starting from same post-ejection state,
        heat flux profiles are quite similar; larger effect

  on density

- comparing ejection phase, ExB case has substantially
        lower plate density, and longer time-scale for heat

flux deposition

- So far, the modeled ELM size has been small; we expect
  ExB to be stronger for large ELMs and will study these



Summary

Analysis of wall evaporation for flinabe in ARIES (CLiFF)
shows surface outlet temperature limits 

- 480 C for an orthogonal plate
- 510 C for a tilted plate

Parameter scans for divertor-plasma conditions in NSTX
show substantial heat loads & provide input to WBC

Initial full-plasma transport simulations for CDX-U show
impact of transition from low to high recycling edge

Characterization of edge-plasmas during ELMs has
begun

3D transport simulations with BORIS code will allow
non-axisymetric edge assessment for liquid modules

Complete a detailed report for the integration of liquid
wall system in a spheromak power-plant


